Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Am Med Inform Assoc ; 28(4): 874-878, 2021 03 18.
Article in English | MEDLINE | ID: covidwho-965544

ABSTRACT

OBJECTIVE: This work investigates how reinforcement learning and deep learning models can facilitate the near-optimal redistribution of medical equipment in order to bolster public health responses to future crises similar to the COVID-19 pandemic. MATERIALS AND METHODS: The system presented is simulated with disease impact statistics from the Institute of Health Metrics, Centers for Disease Control and Prevention, and Census Bureau. We present a robust pipeline for data preprocessing, future demand inference, and a redistribution algorithm that can be adopted across broad scales and applications. RESULTS: The reinforcement learning redistribution algorithm demonstrates performance optimality ranging from 93% to 95%. Performance improves consistently with the number of random states participating in exchange, demonstrating average shortage reductions of 78.74 ± 30.8% in simulations with 5 states to 93.50 ± 0.003% with 50 states. CONCLUSIONS: These findings bolster confidence that reinforcement learning techniques can reliably guide resource allocation for future public health emergencies.


Subject(s)
Algorithms , COVID-19 , Equipment and Supplies/supply & distribution , Machine Learning , Public Health Administration , Resource Allocation/organization & administration , Deep Learning , Pandemics , Resource Allocation/methods
SELECTION OF CITATIONS
SEARCH DETAIL